RESEARCH ARTICLE

OPEN ACCESS

A Case Study On Zft 700 an Live Industrial Casting

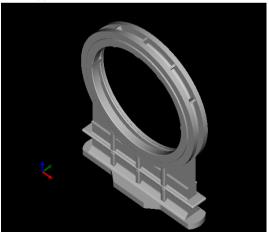
Pankaj Mishra¹, Omprakesh Mishra²

¹ME Dept Jaypee polytechnic & training centre, Rewa, ²ME Dept. Laxminarayan Acamedy of Technology, Gwalior

ABSTRACT

In this paper simulation done for an industrial casting with the help of Auto Cast X based on vector element method. Simulation done before pouring & predict mould thickness, hotspot location, shrinkage, feeder optimization and gating system design prediction. Actual pouring was performed at Jash Engineering Foundry Division at indore.

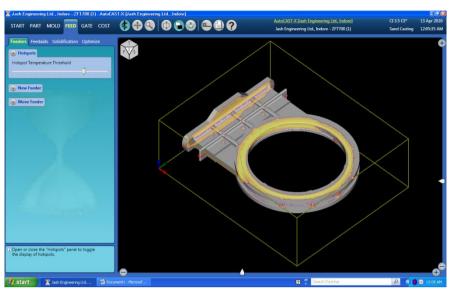
Keywords: shrinkage, feeder optimization, yield


I. Introduction

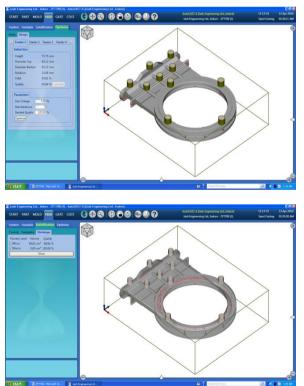
Successfully launching a new cast Product into today's competitive market depends on fast, efficient product development, coupled with quick and flexible manufacturing process.

Auto Cast has a knowledge-based system involving large eddy simulation for combining all the three essential task-

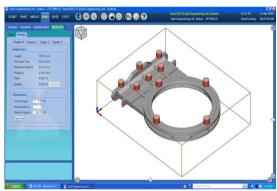
- o Casting design
- o Model creation
- Process simulation

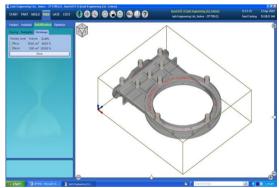

ZFT 700

Dimensions	1163.5 mm X 895 mm X 253 mm	Part Surface Area	2.86
Min. Thickness	2.04 mm	Max. Thickness	26.8
Part Weight	269 kg	Part	37583
J	U	Volume	cm ³

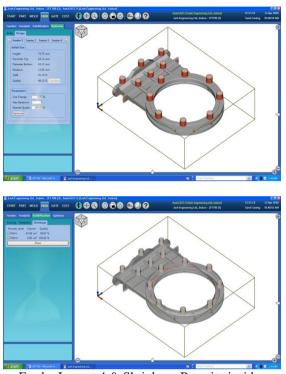

Feeder Location: Hot Spot

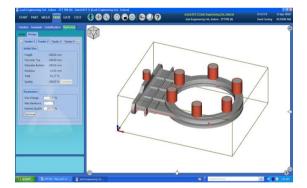
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 International Conference On Emerging Trends in Mechanical and Electrical Engineering (ICETMEE- 13th-14th March 2014)

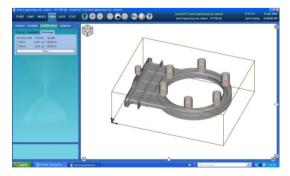



II. Feeder Optimization

Feeder Layout 1 & Shrinkage Porosity inside casting

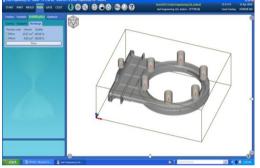

Feeder Layout 2 & Shrinkage Porosity inside casting




Feeder Layout 3 & Shrinkage Porosity inside casting

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 International Conference On Emerging Trends in Mechanical and Electrical Engineering (ICETMEE- 13th-14th March 2014)

Feeder Layout 4 & Shrinkage Porosity inside casting



III. Result

We seen four different layout for feeder and layout four is suitable for our casting because all shrinkage porosity defect come inside the feeder.

Refrences

- Ravi B. (2010), Casting Simulation-Best Practices, IIF Transactions 2010, 58, 19-29.
- [2] Ravi B., (2008) Casting simulation and Optimization Benefits, Bottlenecks, and Best Practices, Indian Foundry Journal, 54(1), 47-52.
- [3] Lewis R. W., Huang H. C., Usmani A. S.(1990), Tadayon M. R., Solidification in castings by finite element method, Materials Science and Technology, 6, 482-489.
- [4] Chen Yin-Heng, Im Yong-Taek(1990), Analysis of Solidification in Sand and Permanent Mold Castings and Shrinkage Prediction, Mach. Tools Manufact., 30, 175-189.
- [5] Sun Lianzhi, Champbell John(2003), Optimized Feeder Design for AL-12Si Alloy, AFS Transactions 2003, 18, 101-106.
- [6] Heisser C. (2003), Simulation in Modern Quality Management Systems, AFS Transactions 2003, 111, 41-50.
- [7] Scarber P., Bates Jr. and C. E. (2006), Simulation of Core Gas Production During Mold Fill, AFS Transactions, 138, 37-44.
- [8] Joshi Durgesh, Sutaria Mayur, Shinde Vasudev D. (2010), Solidification Simulation Approaches and their Application for Shrinkage Porosity Prediction, IIF Transactions, 58, 41-49.
- [9] Joshi Durgesh, Bajpai Vivek, Subrahmanyam A V, Ravi B. (2009), Application of Transient Thermal Analysis for the Assessment of Cooling Potential of Moulding Sands during Casting Solidification, International Journal of Applied Engineering Research, 4, 1955-1966.
- [10] Advanced Reasoning Technologies, AutoCAST information and case studies, http://www.autocast.co.in,2010.